Sabtu, 13 September 2008

Ruang Raksasa Dalam Atom

Udara, air, gunung, binatang, tumbuhan, tubuh anda, kursi yang anda duduki, singkatnya segala yang anda saksikan, sentuh dan rasakan, dari yang paling berat hingga yang paling ringan tersusun atas atom-atom. Setiap halaman yang anda baca tersusun atas miyaran atom. Atom adalah partikel yang sangat kecil sehingga tidak dapat dilihat dengan menggunakan mikroskop yang paling hebat sekalipun. Diameter atom hanyalah berkisar seper satu juta milimeter.


Tidaklah mungkin bagi seseorang untuk melihat benda sekecil ini. Di bawah ini dipaparkan sebuah contoh untuk memahami dimensi atom:

Anggaplah bahwa anda memegang sebuah kunci di tangan. Sudah pasti, mustahil bagi anda untuk melihat atom-atom pada kunci tersebut. Jika anda bersikeras untuk melihat atom penyusun kunci tersebut, maka anda harus memperbesar kunci menjadi seukuran bumi. Jika anda telah berhasil melakukan pembesaran ini, maka atom-atom yang menyusun kunci tersebut akan terlihat berukuran sebesar buah cherry.


Di bawah ini satu lagi contoh agar kita dapat lebih memahami betapa kecilnya atom, dan bagaimana atom memenuhi segala tempat dan ruang yang ada.

Anggaplah kita ingin menghitung semua atom yang ada dalam sebutir garam dan anggaplah kita mampu menghitung satu milyar atom per detik. Kendatipun kita sangat terampil dalam berhitung, kita akan memerlukan lebih dari lima ratus tahun untuk menghitung jumlah keseluruhan atom yang menyusun sebutir garam yang sangat kecil ini. Subhanallaah…ini baru sebutir garam, bagaimana dengan jumlah atom yang menyusun alam semesta dan seisinya?
Kendatipun ukurannya yang teramat mungil, terdapat sebuah susunan yang sempurna, tanpa cacat, unik dan kompleks dalam atom tersebut yang kecanggihannya dapat disejajarkan dengan sistem yang kita lihat ada pada jagat raya.


Setiap atom tersusun atas sebuah inti dan sejumlah elektron yang bergerak mengikuti kulit orbital pada jarak yang sangat jauh dari inti. Di dalam inti terdapat partikel lain yang disebut proton dan netron.

Kekuatan Tersembunyi pada Inti

Inti atom terletak di bagian paling tengah dari atom dan terdiri dari proton dan netron dengan jumlah sesuai dengan sifat-sifat atom tersebut. Jari-jari inti atom berukuran sekitar seper sepuluh ribu jari-jari atom. Untuk menuliskannya dalam angka, jari-jari atom adalah 10-8 (0,00000001) cm, jari-jari inti adalah 10-12 (0,000000000001) cm. Jadi, volume inti atom adalah setara dengan seper sepuluh milyar volume atom.


Dikarenakan kita tidak dapat membayangkan benda sekecil ini, marilah kita ambil permisalan buah cherry di atas. Atom-atom akan terlihat sebesar buah cherry ketika kunci yang anda pegang diperbesar hingga mencapai ukuran bumi. Akan tetapi perbesaran ini masih sama sekali belum memungkinkan kita untuk melihat inti atom yang terlalu kecil untuk dilihat. Jika kita benar-benar ingin melihatnya maka kita harus meningkatkan perbesaran sekali lagi. Buah cherry yang mewakili ukuran atom harus diperbesar hingga menjadi sebuah bola raksasa dengan diameter dua ratus meter. Bahkan dengan perbesaran ini, inti atom tersebut berukuran tidak lebih dari sebutir debu yang teramat kecil.

Ketika kita bandingkan diameter inti atom yang berukuran 10-13 cm dan diameter atom itu sendiri, yakni 10-8 cm, maka yang kita dapatkan adalah sebagaimana berikut: jika kita asumsikan atom tersebut berbentuk bola, maka untuk mengisi bola tersebut hingga penuh, kita akan membutuhkan 1015 (1,000,000,000,000,000) inti atom!


Ada lagi yang lebih mengherankan: kendatipun ukuran inti hanya seper sepuluh milyar ukuran atomnya, inti tersebut memiliki berat 99,95% dari keseluruhan berat atom. Dengan kata lain, hampir seluruh berat atom terpusatkan pada inti. Misalkan anda memiliki rumah dengan luas 10 milyar m2 dan anda harus meletakkan semua perabotan rumah tangga dalam kamar seluas 1 m2 di dalam rumah tersebut. Mampukah anda melakukan hal ini? Sudah pasti anda tidak mampu melakukannya.

Akan tetapi inilah yang terjadi pada inti atom akibat sebuah gaya yang sangat kuat yang tidak ada duanya di alam ini. Gaya ini disebut “strong nuclear force (gaya inti kuat)”, satu di antara empat gaya fundamental yang ada di alam semesta yakni:

1. strong nuclear force (gaya inti kuat),

2. weak nuclear force (gaya inti lemah),

3. gravitational force (gaya grafitasi), dan

4. electromagnetic force (gaya elektromagnetik).


Gaya inti kuat, yang merupakan gaya paling kuat yang ada di alam, mengikat inti atom sehingga stabil dan mencegahnya dari pecah berkeping-keping. Semua proton-proton pembentuk inti bermuatan positif dan, oleh karenanya, mereka saling tolak-menolak akibat gaya electromagnetik mereka yang sejenis. Akan tetapi, gaya inti kuat yang memiliki kekuatan 100 kali lebih besar dari gaya tolak-menolak proton ini menjadikan gaya electromagnetik tidak efektif. Hal inilah yang mampu menjadikan proton-proton pada inti terikat dan bergabung pada inti atom.


Singkat kata, terdapat dua gaya yang saling berinteraksi dalam sebuah atom yang amat kecil. Inti atom tersebut dapat terus-menerus berada dalam keadaan terikat dan stabil disebabkan karena gaya-gaya yang memiliki nilai yang akurat ini.


Ketika kita memperhatikan ukuran atom yang sangat kecil dan kemudian jumlah keseluruhan atom di jagat raya, sungguh tidak sepatutnya kita tidak mampu memahami adanya keseimbangan dan rancangan yang luar biasa pada alam ciptaan Allah ini. Sungguh jelas bahwa gaya-gaya fundamental di alam telah diciptakan Allah secara khusus dengan ilmu, hikmah dan kekuasaan yang maha besar.


Pengetahuan Tuhanku meliputi segala sesuatu. Maka apakah kamu tidak dapat mengambil pelajaran. QS. Al-An’aam, 6:80)


Ruang Kosong pada Atom


Sebagaimana telah disebutkan sebelumnya, bagian terbesar dari sebuah atom terdiri dari ruang kosong. Mungkin kita bertanya-tanya dalam hati: “Mengapa mesti ada ruang kosong ini?” Marilah kita merenung sejenak. Secara sederhana, atom terdiri atas sebuah inti yang dikelilingi oleh elektron-elektron. Antara inti dan orbit elektron ini tidak dijumpai partikel atau benda kecil apapun. Jarak mikroskopis (yang padanya tidak dijumpai partikel apapun) ini ternyata sangat besar jika dilihat dari skala atom.

Kita dapat memisalkan skala ini sebagaimana berikut:


jika sebutir kelereng berdiameter 1 cm mewakili elektron yang terdekat dengan inti atom, maka inti atom tersebut berada pada jarak 1 km dari kelereng ini.


Di bawah ini sebuah kutipan yang memberikan gambaran yang lebih jelas kepada kita tentang dimensi ruang kosong pada atom:


Terdapat ruang kosong besar [yang mengisi ruang] antara partikel-partikel dasar [penyusun atom]. Jika saya umpamakan proton dari inti atom oksigen sebagai kepala jarum yang tergeletak di atas meja di depan saya, maka elektron yang berputar mengelilinginya akan membuat orbit lingkaran yang melalui negeri Belanda, Jerman dan Spanyol (penulis kutipan ini hidup di Perancis). Oleh karenanya, jika semua atom yang menyusun tubuh saya saling mendekatkan diri satu sama lain, hingga semua atom ini saling bersentuhan, maka anda tidak akan mampu melihat saya lagi. Anda benar-benar tidak akan pernah dapat melihat saya dengan mata telanjang. [Tubuh] saya akan [menjadi] sekecil partikel debu berukuran seper sekian ribu milimeter.
(Jean Guitton, Dieu et La Science: Vers Le Métaréalisme, Paris: Grasset, 1991, hal. 62)


Sampai di sini, kita telah memahami bahwa terdapat kemiripan antara ruang kosong pada sistem paling kecil seperti atom dengan ruang kosong pada sistem paling besar seperti alam semesta. Ketika kita arahkan penglihatan kita pada bintang-bintang, akan kita lihat ruang hampa sebagaimana ada pada atom. Terdapat ruang hampa berjarak milyaran kilometer di antara berbagai bintang dan di antara galaksi-galaksi. Namun, di kedua macam ruang hampa ini, terdapat sebuah keteraturan yang luar biasa yang sulit dipahami akal manusia.


Yang telah menciptakan tujuh langit berlapis-lapis. Kamu sekali-kali tidak melihat pada ciptaan Yang Maha Pemurah sesuatu yang tidak seimbang. Maka lihatlah berulang-ulang, adakah kamu lihat sesuatu yang tidak seimbang? Kemudian pandanglah sekali lagi niscaya penglihatanmu akan kembali kepadamu dengan tidak menemukan sesuatu cacat dan penglihatanmu itupun dalam keadaan payah. (QS. Al-Mulk, 67:3-4)


Wallaahu a’lam

LUBANG HITAM

LUBANG HITAM (BLACK HOLE)

Maka Aku bersumpah dengan tempat beredarnya bintang-bintang. Sesungguhnya sumpah itu adalah sumpah yang besar kalau kamu mengetahui. (QS. Al Waaqi'ah, 56: 75-76)

Abad ke-20 menyaksikan banyak sekali penemuan baru tentang peristiwa alam di ruang angkasa. Salah satunya, yang belum lama ditemukan, adalah Black Hole [Lubang Hitam]. Ini terbentuk ketika sebuah bintang yang telah menghabiskan seluruh bahan bakarnya ambruk hancur ke dalam dirinya sendiri, dan akhirnya berubah menjadi sebuah lubang hitam dengan kerapatan tak hingga dan volume nol serta medan magnet yang amat kuat. Kita tidak mampu melihat lubang hitam dengan teropong terkuat sekalipun, sebab tarikan gravitasi lubang hitam tersebut sedemikian kuatnya sehingga cahaya tidak mampu melepaskan diri darinya. Namun, bintang yang runtuh seperti itu dapat diketahui dari dampak yang ditimbulkannya di wilayah sekelilingnya. Di surat Al Waaqi'ah, Allah mengarahkan perhatian pada masalah ini sebagaimana berikut, dengan bersumpah atas letak bintang-bintang:

Maka Aku bersumpah dengan tempat beredarnya bintang-bintang. Sesungguhnya sumpah itu adalah sumpah yang besar kalau kamu mengetahui. (QS. Al Waaqi'ah, 56: 75-76)

Istilah "lubang hitam" pertama kali digunakan tahun 1969 oleh fisikawan Amerika John Wheeler. Awalnya, kita beranggapan bahwa kita dapat melihat semua bintang. Akan tetapi, belakangan diketahui bahwa ada bintang-bintang di ruang angkasa yang cahayanya tidak dapat kita lihat. Sebab, cahaya bintang-bintang yang runtuh ini lenyap. Cahaya tidak dapat meloloskan diri dari sebuah lubang hitam disebabkan lubang ini merupakan massa berkerapatan tinggi di dalam sebuah ruang yang kecil. Gravitasi raksasanya bahkan mampu menangkap partikel-partikel tercepat, seperti foton [partikel cahaya]. Misalnya, tahap akhir dari sebuah bintang biasa, yang berukuran tiga kali massa Matahari, berakhir setelah nyala apinya padam dan mengalami keruntuhannya sebagai sebuah lubang hitam bergaris tengah hanya 20 kilometer (12,5 mil)! Lubang hitam berwarna "hitam", yang berarti tertutup dari pengamatan langsung. Namun demikian, keberadaan lubang hitam ini diketahui secara tidak langsung, melalui daya hisap raksasa gaya gravitasinya terhadap benda-benda langit lainnya.

Selain gambaran tentang Hari Perhitungan, ayat di bawah ini mungkin juga merujuk pada penemuan ilmiah tentang lubang hitam ini:

Maka apabila bintang-bintang telah dihapuskan (QS. Al Mursalaat, 77: 8)

Selain itu, bintang-bintang bermassa besar juga menyebabkan terbentuknya lekukan-lekukan yang dapat ditemukan di ruang angkasa. Namun, lubang hitam tidak hanya menimbulkan lekukan-lekukan di ruang angkasa tapi juga membuat lubang di dalamnya. Itulah mengapa bintang-bintang runtuh ini dikenal sebagai lubang hitam. Kenyataan ini mungkin dipaparkan di dalam ayat tentang bintang-bintang, dan ini adalah satu bahasan penting lain yang menunjukkan bahwa Al Qur'an adalah firman Allah:

Demi langit dan Ath Thaariq, tahukah kamu apakah Ath Thaariq? (yaitu) bintang yang cahayanya menembus. (QS. At Thaariq, 86: 1-3)


PULSAR: BINTANG BERDENYUT

Demi langit dan Ath Thaariq, tahukah kamu apakah Ath Thaariq? (yaitu) bintang yang cahayanya menembus.

(QS. At Thaariq, 86: 1-3)

Pulsar adalah sisa-sisa bintang padam yang memancarkan gelombang radio teramat kuat yang menyerupai denyut, dan yang berputar pada sumbunya sendiri dengan sangat cepat. Telah dihitung bahwa terdapat lebih dari 500 pulsar di galaksi Bima Sakti, yang di dalamnya terdapat Bumi kita.

Kata "Thaariq," nama surat ke-86, berasal dari akar kata "tharq," yang makna dasarnya adalah memukul dengan cukup keras untuk menimbulkan suara, atau menumbuk. Dengan mempertimbangkan arti yang mungkin dari kata tersebut, yakni "berdenyut/berdetak," "memukul keras," perhatian kita mungkin diarahkan oleh ayat ini pada sebuah kenyataan ilmiah penting. Sebelum menelaah keterangan ini, marilah kita lihat kata-kata selainnya yang digunakan dalam ayat ini untuk menggambarkan bintang-bintang ini. Istilah "ath-thaariqi" dalam ayat di atas berarti sebuah bintang yang menembus malam, yang menembus kegelapan, yang muncul di malam hari, yang menembus dan bergerak, yang berdenyut/berdetak, yang menumbuk, atau bintang terang. Selain itu, kata "wa" mengarahkan perhatian pada benda-benda yang digunakan sebagai sumpah – yakni, langit dan Ath Thaariq.

Melalui penelitian oleh Jocelyn Bell Burnell, di Universitas Cambridge pada tahun 1967, sinyal radio yang terpancar secara teratur ditemukan. Namun, hingga saat itu belumlah diketahui bahwa terdapat benda langit yang berkemungkinan menjadi sumber getaran atau denyut/detak teratur yang agak mirip pada jantung. Akan tetapi, pada tahun 1967, para pakar astronomi menyatakan bahwa, ketika materi menjadi semakin rapat di bagian inti karena perputarannya mengelilingi sumbunya sendiri, medan magnet bintang tersebut juga menjadi semakin kuat, sehingga memunculkan sebuah medan magnet pada kutub-kutubnya sebesar 1 triliun kali lebih kuat daripada yang dimiliki Bumi. Mereka lalu paham bahwa sebuah benda yang berputar sedemikian cepat dan dengan medan magnet yang sedemikian kuat memancarkan berkas-berkas sinar yang terdiri dari gelombang-gelombang radio yang sangat kuat berbentuk kerucut di setiap putarannya. Tak lama kemudian, diketahui juga bahwa sumber sinyal-sinyal ini adalah perputaran cepat dari bintang-bintang neutron. Bintang-bintang neutron yang baru ditemukan ini dikenal sebagai "pulsar." Bintang-bintang ini, yang berubah menjadi pulsar melalui ledakan supernova, tergolong yang memiliki massa terbesar, dan termasuk benda-benda yang paling terang dan yang bergerak paling cepat di ruang angkasa. Sejumlah pulsar berputar 600 kali per detik.

Kata "pulsar" berasal dari kata kerja to pulse . Menurut kamus American Heritage Dictionary, kata tersebut berarti bergetar, berdenyut. Kamus Encarta Dictionary mengartikannya sebagai berdenyut dengan irama teratur, bergerak atau berdebar dengan irama teratur yang kuat. Lagi menurut Encarta Dictionary, kata " pulsate ", yang berasal dari akar yang sama, berarti mengembang dan menyusut dengan denyut teratur yang kuat.

Menyusul penemuan itu, diketahui kemudian bahwa peristiwa alam yang digambarkan dalam Al Qur'an sebagai "thaariq," yang berdenyut, memiliki kemiripan yang sangat dengan bintang-bintang neutron yang dikenal sebagai pulsar.

Bintang-bintang neutron terbentuk ketika inti dari bintang-bintang maharaksasa runtuh. Materi yang sangat termampatkan dan sangat padat itu, dalam bentuk bulatan yang berputar sangat cepat, menangkap dan memampatkan hampir seluruh bobot bintang dan medan magnetnya. Medan magnet amat kuat yang ditimbulkan oleh bintang-bintang neutron yang berputar sangat cepat ini telah dibuktikan sebagai penyebab terpancarnya gelombang-gelombang radio sangat kuat yang teramati di Bumi.

Di ayat ke-3 surat Ath Thaariq istilah "an najmu ats tsaaqibu," yang berarti yang menembus, yang bergerak, atau yang membuat lubang, mengisyaratkan bahwa Thaariq adalah sebuah bintang terang yang membuat lubang di kegelapan dan bergerak. Makna istilah "adraaka" dalam ungkapan "Tahukah kamu apakah Ath Thaariq itu?" merujuk pada pemahaman. Pulsar, yang terbentuk melalui pemampatan bintang yang besarnya beberapa kali ukuran Matahari, termasuk benda-benda langit yang sulit untuk dipahami. Pertanyaan pada ayat tersebut menegaskan betapa sulit memahami bintang berdenyut ini. (Wallaahu a'lam)

Sebagaimana telah dibahas, bintang-bintang yang dijelaskan sebagai Thaariq dalam Al Qur'an memiliki kemiripan dekat dengan pulsar yang dipaparkan di abad ke-20, dan mungkin mengungkapkan kepada kita tentang satu lagi keajaiban ilmiah Al Qur'an.


BINTANG SIRIUS (SYI'RA)

Bintang Sirius [Syi’ra] muncul di Surat An Najm (yang berarti "bintang"). Bintang ganda yang membentuk bintang Sirius ini saling mendekat dengan sumbu kedua bintang itu yang berbentuk busur setiap 49,9 tahun sekali. Peristiwa alam tentang bintang ini diisyaratkan dalam ayat ke-9 dan ke-49 dari Surat An Najm.
Ketika pengertian-pengertian tertentu yang disebutkan dalam Al Qur'an dikaji berdasarkan penemuan-penemuan ilmiah abad ke-21, kita akan mendapati diri kita tercerahkan dengan lebih banyak keajaiban Al Qur'an. Salah satunya adalah bintang Sirius (Syi'ra), yang disebut dalam surat An Najm ayat ke-49:

… dan bahwasanya Dialah Tuhan (yang memiliki) bintang Syi'ra (QS. An Najm, 53: 49)

Kenyataan bahwa kata Arab "syi'raa," yang merupakan padan kata bintang Sirius, muncul hanya di Surat An Najm (yang hanya berarti "bintang") ayat ke-49 secara khusus sangatlah menarik. Sebab, dengan mempertimbangkan ketidakteraturan dalam pergerakan bintang Sirius, yakni bintang paling terang di langit malam hari, sebagai titik awal, para ilmuwan menemukan bahwa ini adalah sebuah bintang ganda. Sirius sesungguhnya adalah sepasang dua bintang, yang dikenal sebagai Sirius A dan Sirius B. Yang lebih besar adalah Sirius A, yang juga lebih dekat ke Bumi dan bintang paling terang yang dapat dilihat dengan mata telanjang. Tapi Sirus B tidak dapat dilihat tanpa teropong.

Bintang ganda Sirius beredar dengan lintasan berbentuk bulat telur mengelilingi satu sama lain. Masa edar Sirius A dan B mengelilingi titik pusat gravitasi mereka yang sama adalah 49,9 tahun. Angka ilmiah ini kini diterima secara bulat oleh jurusan astronomi di universitas Harvard, Ottawa dan Leicester. Keterangan ini dilaporkan dalam berbagai sumber sebagai berikut:

  1. Sirius, bintang yang paling terang, sebenarnya adalah bintang kembar… Peredarannya berlangsung selama 49,9 tahun.
  2. Sebagaimana diketahui, bintang Sirius-A dan Sirius-B beredar mengelilingi satu sama lain melintasi sebuah busur ganda setiap 49,9 tahun.
    Hal yang perlu diperhatikan di sini adalah garis edar ganda berbentuk busur dari dua bintang tersebut yang mengitari satu sama lain.

Namun, kenyataan ilmiah ini, yang ketelitiannya hanya dapat diketahui di akhir abad ke-20, secara menakjubkan telah diisyaratkan dalam Al Qur'an 1.400 tahun lalu. Ketika ayat ke-49 dan ke-9 dari surat An Najm dibaca secara bersama, keajaiban ini menjadi nyata:

..dan bahwasanya Dialah Tuhan (yang memiliki) bintang Syi'ra (QS. An Najm, 53: 49)
...maka jadilah dia dekat dua ujung busur panah atau lebih dekat (lagi).

(QS. An Najm, 53: 9)

Penjelasan dalam Surat An Najm ayat ke-9 tersebut mungkin pula menggambarkan bagaimana kedua bintang ini saling mendekat dalam peredaran mereka. (Wallaahu a'lam). Fakta ilmiah ini, yang tak seorang pun dapat memahami di masa pewahyuan Al Qur'an, sekali lagi membuktikan bahwa Al Qur'an adalah firman Allah Yang Mahakuasa.

Jumat, 12 September 2008

FISIKA INDUSTRI

Ternyata Fisika Dibutuhkan Industri

Dalam beberapa minggu terakhir ini penulis sedang menyiapkan materi seminar applikasi MIPA dalam industri. Penulis tidak menyangka, ternyata penerapan MIPA khususnya fisika dalam industri luar biasa banyak, jauh lebih banyak dari apa yang penulis duga sebelumnya. Rasanya tanpa fisika tidak mungkin industri berkembang seperti sekarang. Sebut saja riset serat optik. Kalau saja serat optik tidak ditemukan, mungkin industri komunikasi yang bernilai miliaran dollar amerika dan telah memperkerjakan jutaan orang, tidak pernah ada.

Industri memang tidak bisa dipisahkan dari Fisika. Hampir setiap kali fisikawan menemukan material baru selalu disusul dengan timbulnya industri baru. Misalnya penemuan liquid crystal, material yang mempunyai sifat liquid (cair) dan kristal. Sifat optik liquid crystal yang mampu merubah diri menjadi lebih gelap atau lebih terang dibawah medan listrik tertentu telah menumbuhkan industri senilai lebih dari $ 10 billion (miliar dollar Amerika) berupa produk layar komputer lap-top, televisi hemat energi, jam, disk optik yang dapat ditulis/dihapus, dan smart window (jendela yang berubah warna karena perubahan suhu).
  • Penemuan polimer, material yang susunan molekulnya panjang, telah dimanfaatkan NIKE untuk membuat industri yang besar dengan menciptakan sepatu yang lentur dan tahan lama. Polimer juga telah dikembangkan untuk menjadi material yang lebih kuat dari baja tetapi lebih ringan dari alumunium. Polimer jenis ini dipakai sebagai kerangka mobil dalam industri otomotif. Polimer jenis lain dipakai untuk membuat engsel buatan, kulit buatan, tulang buatan, katup jantung buatan dan lebih dari 5000 alat kedokteran serta berbagai produk yang menggunakan biomaterial. Polimer ini telah membuat industri kedokteran berkembang pesat sekali.
  • Penemuan material komposit (campuran grafit-epoksi) yang ringan, tidak mudah rusak dan anti air seperti serat kaca telah mendorong perkembangan industri alat musik (gitar, biola dsb) dan alat olah raga. Juga penemuan komposit teflon telah menumbuhkan industri yang produknya berupa alat rumah tangga (alat masak) dan berbagai pakaian tahan panas.
  • Penelitian thin film telah mampu membuat rumah lebih hangat dimusim dingin dengan memantulkan panas kembali kedalam rumah. Thin film juga menjadi dasar dari pembuatan jendela “pintar” yang tahu kapan harus menyerap panas dan kapan harus memantulkannya. Penelitian di bidang thin film telah membantu pertumbuhan industri penyemprotan/pelapisan.
Disamping penemuan material baru, berbagai riset fisika lainnya juga telah mendorong tumbuhnya berbagai industri misalnya: riset semikonduktor, integrated circuit (IC), global positioning system (GPS), material magnetik, laser dan energi lingkungan.
  • Penemuan semikonduktor tahun 1947 yang dilanjutkan dengan pengembangan IC dimana ribuan komponen elektronik seperti dioda dan transistor dipaketkan dalam suatu tempat yang kecil sekali, telah merubah pola hidup manusia. IC yang kecil itu kini dapat ditemukan dalam pesawat telefon, radio, TV digital, kulkas, mesin ATM , microwave dan mobil. Penelitian IC dan elektronika mikro membuat komputer lebih kecil, lebih cepat dan lebih murah. Kalau dulu harga komputer jutaan dollar kini hanya jutaan rupiah. Dengan adanya IC, komputer yang tadinya beratnya puluhan ton kini menjadi sangat ringan hanya beberapa kilogram. Tahun 1950 hanya ada 10 komputer, sekarang karena lebih murah dan lebih kecil, komputer sangat banyak jumlahnya. Hampir di setiap tempat kita temukan komputer. Industri komputer telah menciptakan lebih dari 2,6 juta lapangan pekerjaan dan bernilai lebih dari $ 400 billion (6,5 % dari GDP amerika serikat). Di dalam industri otomotif, IC dibuat agar pemakaian bahan bakar lebih irit, untuk mengontrol alat penyelamat waktu tabrakan (air bag) dan pemakaian GPS (global position system).
  • Global Position System (GPS) merupakan suatu sistem pendeteksian benda. Dengan GPS seorang pilot pesawat pengintai bisa mengetahui secara tepat dimana lokasi pesawat musuh, seorang tentara bisa bergerak walaupun situasi gelap, seorang pengemudi dapat menemukan lokasi tempat yang ditunjukkan peta dengan tepat, seorang pemancing bisa tahu dimana lokasi mata kailnya ketika dilemparkan ke laut dan seorang pemain golf bisa tahu dimana posisi bola golf. Dengan pemakaian yang begitu luas GPS telah menjadi suatu industri yang besar dan menjanjikan. Industri GPS telah memperkerjakan lebih dari 2,3 juta di Amerika serta menghasilkan uang yang besarnya sekitar 4-5 % GDP Amerika.
  • Tahun 1954 Charles Townes hanya mengeluarkan uang $ 30.000 untuk mengembangkan maser yang menjadi pendahulu laser. Laser bersama dengan material magnetik telah menghidupkan berbagai industri yang berhubungan dengan penyimpanan data seperti CD (compact disc) dan video. Laser juga telah membangkitkan industri dalam rumah sakit (alat-alat operasi kanker, operasi katarak dsb), industri telekomunikasi (serat optik), industri pertahanan, dan berbagai industri yang memakai scanner (misalnya scanner di mal-mal atau di pintu masuk suatu tempat rahasia).
  • Dalam bidang energi dan lingkungan riset fisika telah memanfaatkan energi matahari dan energi angin. Pemakaian sel surya (solar cell) telah tumbuh lebih dari 15% pertahun sedangkan biaya pembuatannya berkurang lebih dari 90%. Efisiensi dari fotovoltaik sel juga naik lebih dari 500% sejak tahun 1978. Industri sel surya sudah berkembang dengan baik dan prospek ke depannya sangat menjanjikan. Untuk energi angin penemuan motor yang lebih efisien dan material yang lebih ringan untuk turbin telah mengurangi biaya lebih dari 90% sejak tahun 1981, membuat pemanfaatan energi angin sangat menjanjikan serta membuatnya kompetitif dengan batu bara. Pasar dari energi angin lebih dari $ 2,4 billion dan dapat menciptakan ribuan pekerjaan.
  • Industri lain seperti industri kedokteran, banyak dipacu oleh penelitian fisika. MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), CAT (Computer Axial Tomography) dan ultra sound telah berkembang menjadi industri yang menarik. MRI bekerja berdasarkan kelakuan atom-atom yang kontras dibawah medan magnetik. MRI mampu membuat bayangan dari struktur bagian dalam tubuh seperti otak, jantung dsb. PET yang awalnya adalah alat untuk fisika partikel, mampu mengukur aktifitas otak dan melihat jika ada kerusakan dalam otak itu. CAT (computer axial tomography) menggunakan sinar X untuk mengetahui keadaan tubuh manusia. Sedangkan ultra sound untuk melihat keadaan bayi sebelum lahir ataupun untuk mengetahui kedalaman laut.
    Dalam bidang kecantikanpun industri dipacu oleh penelitian fisika berupa penelitian material yang mampu menahan kulit dari sengatan matahari.

Apakah cerita sukses fisika dalam industri masih akan berlangsung terus?


Dalam perkembangan ke depan ada 3 industri yang sangat penting yaitu:

  1. industri yang berkaitan dengan teknologi informasi,
  2. industri yang berkaitan dengan bioteknologi
  3. industri yang berkaitan dengan energi.
Dalam ketiga industri ini fisika masih akan memegang peranan penting.
  • Dalam teknologi informasi, riset fisika akan berkisar pada bagaimana membuat informasi lebih mudah diakses. Dalam hal ini riset superkonduktor dan riset teknologi-nano (teknologi seukuran atom) akan sangat penting. Lebih-lebih setelah ditemukannya magnesium diborida (MgB2) pada bulan Febuari 2001 sebagai material yang mempunyai sifat sebagai superkonduktor (mempunyai hambatan listrik nol) pada suhu yang cukup tinggi 38 K. Teknologi-nano berusaha menemukan jalan bagaimana agar komputer lebih powerful. Bukan itu saja, teknologi-nano juga diharapkan dapat menjadi pembuka jalan untuk ditemukannya material-material baru yang bermanfaat bagi kehidupan manusia.
  • Dalam bioteknologi, penelitian akan berkisar pada pemetaan genom yang digunakan untuk pengobatan genetika, pemuliaan tanaman atau hewan serta kloning makhluk hidup. Pemetaan genom akan lebih berhasil jika menggunakan komputer yang kemampuannya ratusan kali lebih cepat dari komputer PC yang ada sekarang. Riset fisika akan membantu agar ini bisa tercapai dalam waktu lebih cepat.
  • Dalam bidang energi, riset fisika akan difokuskan pada pencarian alternatif sumber energi baru selain minyak. Pengembangan reaksi fusi terkendali, pemanfaatan tenaga matahari dan pemanfaatan tenaga angin akan menjadi riset andalan.

Bagaimana dengan riset fisika partikel, riset fisika nuklir, fisika plasma, astronomi, condensed matter dan lainnya?

Riset-riset ini masih akan terus berlangsung untuk menguak banyak rahasia alam. Hasil sampingan riset ini diharapkan akan bermanfaat untuk industri misalnya penemuan world wide web (www) oleh para ahli fisika partikel di CERN tahun 1989, secara tidak sengaja telah menjadi suatu industri internet yang luar biasa besar.

Rabu, 10 September 2008

LHC


Large Hadron Collider - LHC : Awal dari sebuah Akhir ?


LHC (Large Hadron Collider) di pusat akselerator dunia, CERN di pinggiran kota Genewa berbatasan dengan Perancis, menjadi bintang berita iptek hari ini (10/9). Hal ini terkait dengan saat pertama LHC dijalankan secara resmi. Bahkan bagi pecandu Google, pasti menyadari perubahan logo baru Google dengan animasi akselerator.

Kehebohan ini mengingat LHC merupakan ‘proyek mercusuar’ iptek modern di era global dengan melibatkan seperlima negara di dunia dan jumlah kolaborasi ribuan personil dari beragam bidang. Proyek ini menghabiskan ‘pengeluaran langsung’ sebesar $ 60 milyar ! Ini belum termasuk pengeluaran tidak langsung seperti biaya komputasi dan sebagainya yang dilaksanakan di luar LHC tetapi dilakukan secara berkelanjutan selama eksperimen berjalan. Sebagian besar biaya tersebut ditanggung oleh negara-negara Uni Eropa dan 6 negara lain seperti Amerika, Rusia, Jepang, Cina, Taiwan dan Kanada. Ditambah beberapa negara partisipan kecil : Israel, Iran, Korea dan lain-lain.

Skala LHC disumbangkan oleh terowongan berdiameter 3,8 m dengan total panjang 27 km berbentuk lingkaran 50–175 m di bawah tanah seperti gambar diatas. Di dalam terowongan tersebut dipasang pipa hampa udara dengan magnet berdaya super di sekelilingnya. Supermagnet sebanyak 1232 buah ini berfungsi untuk membelokkan proton (salah satu jenis hadron) yang ditembakkan dari dua arah yang berlawanan, dan bertumbukkan di satu titik untuk menghasilkan ‘pecahan-pecahan’ partikel yang lebih elementer. Tanpa medan magnet super, proton yang bermuatan tidak akan bisa dibelokkan agar tetap berada di lintasan yang berbentuk lingkaran tersebut. Pipa hampa udara diperlukan untuk menghilangkan kemungkinan interaksi proton dengan molekul gas yang akan ‘mengotori’ hasil pengamatan atas tumbukan kedua proton di detektor. Untuk menghasilkan medan magnet super ini digunakan superkonduktor guna mencapai efisiensi daya listrik. Teknologi supermagnet dan superkonduktor ini merupakan akumulasi teknologi tinggi yang telah diperoleh dari eksperimen berbasis akselerator yang sudah dilakukan di berbagai belahan dunia, dan malah telah diaplikasikan sebagai teknologi maju di kereta api magnet dan sebagainya.

Hasil tumbukan proton-proton dari kedua arah tersebut akan ditangkap oleh detektor-detektor super beresolusi tinggi di 4 grup eksperimen, CMS, ATLAS, ALICE dan LHCb. Empat grup eksperimen ini memiliki tujuan untuk melihat aspek yang berbeda dari hasil tumbukan.

Untuk menjalankan fasilitas semacam LHC diperlukan konsumsi energi yang luar biasa. Setidaknya untuk menjalankan cryogenics yang berfungsi sebagai pendingin supermagnet diperlukan listrik sebesar 27,5 MW ! Sedangkan untuk detektor di empat grup eksperimen diperlukan total 22 MW. Daya listrik sebesar ini harus tersedia tanpa jeda selama eksperimen berlangsung. Gangguan di tengah periode eksperimen berakibat pengulangan dari awal. Tidaklah mengherankan bila CERN memiliki pusat pembangkit tersendiri sebanyak dua buah, dimana salah satunya sebagai cadangan.

Skala LHC juga ditunjukkan oleh sistem komputasi yang dipakai. Kebutuhan komputasi dengan kecepatan dan kapasitas raksasa di LHC merupakan pemicu utama pengembangan teknologi komputasi paralel berbasis GRID. GRID merupakan komputasi paralel yang disusun dari komputer-komputer paralel di berbagai belahan dunia yang terhubung melalui koneksi pita super lebar. Salah satu tulang punggung utama adalah koneksi langsung dengan kapasitas 10 Gbps antara komputer paralel di CERN dan SLAC (Stanford Linear Accelerator Center) di Amerika. Komputasi berkinerja tinggi diperlukan untuk mengolah data hasil tumbukan yang berjumlah sangat besar secara waktu nyata. Tanpa ini akan diperlukan kapasitas penyimpanan yang sangat besar yang tidak akan bisa dipenuhi oleh teknologi penyimpanan data saat ini ! Ini sangat berbeda dengan kebanyakan akselerator yang telah ada, dimana data mentah selalu disimpan terlebih dahulu untuk kemudian diolah dan dipilah setelahnya.

Target utama LHC

Mengapa LHC begitu penting dan berskala raksasa ?

LHC ditargetkan untuk menguak misteri alam semesta melalui penemuan partikel elementer terakhir prediksi teori partikel yang sejauh ini belum ditemukan keberadaannya. Partikel ini disebut sebagai Higgs, sesuai nama fisikawan partikel teori yang memodelkannya di era 70-an. Partikel ini memegang peranan sebagai media perusak simetri untuk menghasilkan massa 16 partikel elementer yang lain yang telah dibuktikan keberadaannya. Kepastian atas keberadaan partikel Higgs ini akan menutup skenario teori partikel standar modern. Dilain pihak, kepastian akan ketiadaan Higgs akan memicu era baru di komunitas teori fisika partikel, seperti terjadi di dekade 70-an saat teori partikel standar baru dibangun. Karenanya, dalam konteks ini, konfirmasi atas ketiadaan Higgs justru ‘diharapkan’ oleh banyak sivitas di komunitas ini. Tanpa eksistensi Higgs, ekstensi teori partikel terpopuler yang disebut supersimetri akan kehilangan pijakannya. Target eksperimen ini menjadi bagian dari grup CMS dan ATLAS.

Berlawanan dengan teori partikel, LHC akan memberikan pijakan awal bagi teori astrofisika. Dengan skala energi yang bisa dicapai oleh LHC, untuk pertama kalinya manusia mampu mereproduksi proses terjadinya alam semesta sejak era big-bang seperti telah diprediksi oleh Hawking dkk. Karena LHC mampu melihat plasma dengan suhu dan kepadatan tinggi yang dihasilkan dari tumbukan proton. Plasma ini merupakan keadaan dari alam semesta segera setelah big-bang sebelum kemudian mendingin dan membentuk struktur-struktur baru berbasis materi nuklir seperti kita kenal saat ini. Eksperimen ini menjadi bagian dari grup ALICE.

Apa yang terjadi bila semua prediksi diatas tidak berhasil diamati ? Itulah yang disebut komunitas fisika partikel sebagai mimpi buruk. Mimpi buruk bagi komunitas eksperimen partikel karena membangun fasilitas eksperimen baru dengan kemampuan lebih besar sudah hampir mustahil, baik secara teknis dan terlebih finansial. Bencana juga bagi komunitas teori partikel yang akan kehilangan ‘petunjuk’ untuk mengembangkan teori yang sudah ada. Tentu saja kita hanya bisa menunggu konklusi final yang akan dilaporkan LHC setelah satu tahun pertamanya di akhir 2009 !

Selasa, 02 September 2008

POHON AJAIB



Pohon ajaib ini akan aneh kelihatanya bila kamu semakin memandanginya, untuk lebih jelasnya kamu dapat mencobanya dengan cara mempelototinya berlama-lama.